Quiver varieties and Frenkel-Kac construction

نویسنده

  • Kentaro Nagao
چکیده

An affine Lie algebra acts on cohomology groups of quiver varieties of affine type. A Heisenberg algebra acts on cohomology groups of Hilbert schemes of points on a minimal resolution of a Kleinian singularity. We show that in the case of type A the former is obtained by Frenkel-Kac construction from the latter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6 Generalized Kac - Moody Lie Algebras and Product Quivers

We construct the entire generalized Kac-Moody Lie algebra as a quotient of the positive part of another generalized Kac-Moody Lie algebra. The positive part of a generalized Kac-Moody Lie algebra can be constructed from representations of quivers using Ringel's Hall algebra construction. Thus we give a direct realization of the entire generalized Kac-Moody Lie algebra. This idea arises from the...

متن کامل

On Quiver Varieties and Affine Grassmannians of Type A

We construct Nakajima’s quiver varieties of type A in terms of affine Grassmannians of type A. This gives a compactification of quiver varieties and a decomposition of affine Grassmannians into a disjoint union of quiver varieties. Consequently, singularities of quiver varieties, nilpotent orbits and affine Grassmannians are the same in type A. The construction also provides a geometric framewo...

متن کامل

Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac–Moody Algebras, and Painlevé Equations

To a finite quiver equipped with a positive integer on each of its vertices, we associate a holomorphic symplectic manifold having some parameters. This coincides with Nakajima’s quiver variety with no stability parameter/framing if the integers attached on the vertices are all equal to one. The construction of reflection functors for quiver varieties are generalized to our case, in which these...

متن کامل

Geometric Construction of Highest Weight Crystals for Quantum Generalized Kac-moody Algebras

We present a geometric construction of highest weight crystals B(λ) for quantum generalized Kac-Moody algebras. It is given in terms of the irreducible components of certain Lagrangian subvarieties of Nakajima’s quiver varieties associated to quivers with edge loops. Introduction The 1990’s saw a great deal of interesting interplay between the geometry of quiver varieties and the representation...

متن کامل

Non-commutative Symplectic Geometry, Quiver Varieties, and Operads

Quiver varieties have recently appeared in various different areas of Mathematics such as representation theory of Kac-Moody algebras and quantum groups, instantons on 4-manifolds, and resolutions Kleinian singularities. In this paper, we show that many important affine quiver varieties, e.g., the Calogero-Moser space, can be imbedded as coadjoint orbits in the dual of an appropriate infinite d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007